kunst uni graz Construction of American Construction and American Construction of American Construction (Construction) (Constr

Vibrandan a 1919/1918 A Statements 2018 Statements (1919) Advances March (1919) Advances (19 Advances (1919) Advances (1919

Assessment of Simulations in FAUST and TASCAR for the Development of Audio Algorithms in Acoustic Environments

Felix Holzmüller, Christian Blöcher, Alois Sontacchi {holzmueller, bloecher, sontacchi}@iem.at

Institute of Electronic Music and Acoustics University of Music and Performing Arts Graz Soundfield

Introduction

- Research on active noise control (ANC) in time-variant environments
- ANC \rightarrow hard real-time constraints
- Difficult to evaluate & validate algorithms
 - Offline evaluation often not possible
 - Evaluation on hardware (DSP/FPGA)

Introduction

Evaluation on hardware

- Bare metal programming
 - \rightarrow hardware-bound, time consuming, hard to adapt
- Conversion from higher language (Syfala/dSPACE/SpeedGoat) \rightarrow costly, dedicated hardware
- General disadvantages
 - Hardware availability/costs
 - Limited repeatability
 - Measurement space

 \rightarrow Real-time simulation of acoustic scenarios

TASCAR

- "Toolbox for Acoustic Scene Creation and Rendering"
- Open-source audio virtualization tool (University of Oldenburg)
- Widespread use for hearing-aid research, audiology, and deep learning
- Offline & real-time sample-based auralization of acoustic scenes
- Using Jack Audio Connection Kit (I/O, time-line)
- Direct user-interaction via OSC

Experiment Setup

- Compare accuracy of simulation to measurements/co-simulations
 - Soundfield properties
 - Behavior of acoustic algorithms
- Two different rooms
 - Semi-anaechoic measurement room
 - Anisotropic meeting room
- Different source configurations (1/4/8 sources)
- Reference recording with linear microphone arrangement

Measurement setup - measurement chamber

Measurement setup - meeting room

Simulation setup

- Remodel simplified room model in TASCAR based on high-precision 3D scan
- Estimated absorption coefficients for each surface
- Varying simulation accuracy
 - 0. Free-field conditions
 - 1. 2nd order image source model (ISM)
 - **2.** 2^{nd} order ISM + modeled source directivity
 - 3. 2^{nd} order ISM + directivity + FDN reverb
- Rendered offline (roomacoustic parameters) or online (RT signal processing)

Soundfield analysis

Analyzed properties

- Level distribution along array
- Spatial coherence/correlation to central position
 - Spatial correlation widely used measure for description of sound fields
 - \blacktriangleright Correlation only valid for test signal \rightarrow time consuming
 - ► Spatial coherence with broadband excitation for fast/easier measurement

Level distribution - measurement room

1 source

8 sources

Level distribution - meeting room

1 source

4 sources

Spatial coherence - measurement room (4ch)

 $f = 300 \, \text{Hz}$

 $f=1000\,\mathrm{Hz}$

Spatial coherence - measurement room (8ch)

 $f = 300 \, \text{Hz}$

 $f = 1000 \, \text{Hz}$

Spatial coherence - meeting room (1ch)

 $f = 300 \, \text{Hz}$

 $f=1000\,{
m Hz}$

Spatial coherence - meeting room (4ch)

 $f = 300 \, \text{Hz}$

 $f = 1000 \, \text{Hz}$

Real-time simulation

- Feedforward ANC as example
 - Disturbances emitted by primary source
 - Play antinoise signal to cancel noise at listening position
 - Antinoise generated by adaptive filter
- Acoustic simulation in TASCAR
- Signal processing in FAUST (faust2jack)
- Latency defined by JACK settings
- Compare adaptation properties to measurement-based co-simulation

Adaptation speed

Measurement room

Meeting room

Soundfield

Steady state spectrum

Measurement room

Meeting room

Conclusion

- FAUST and TASCAR can be used in combination to evaluate audio algorithms
- Good accuracy in low reflective environments
- Limited validity in diffuse settings
- Handy tool for quick experiments and pre-studies
- Can't replace physical measurements completely

Outlook

- Time-variant virtualization by using external sensors
- faust2tascar

Contact: holzmueller@iem.at

