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Agenda
• Differentiation
• Dual Number arithmetic
• Automatic Differentiation
• Differentiable Programming in Faust
• Gradient-based Parameter Optimisation
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Di�erentiation
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In�nitessimal Jest
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 is Newton’s notation for the derivative.

 is a nilpotent symbol: 

Baydin, Pearlmutter, Radul, and Siskind. 2018. ‘Automatic Differentiation in Machine Learning: A Survey’. Journal of Machine
Learning Research 18.

Rall. 1986. ‘The Arithmetic of Differentiation’. Mathematics Magazine 59 (5): 275–82.
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This is a DUAL NUMBER.

The �rst component is the PRIMAL expression; the second is the TANGENT.

Possible interpretation — truncated Taylor series expansion at :
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Dual Number Arithmetic
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The basic rules of differentiation arithmetic arise from application of dual numbers.

10



The truncated Taylor series gives us some other useful results.
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Multiple applications of  give us the chain rule.

E.g. let  and :

12



A Change of Notation

Possible implementation:

class Dual {
//...
float primal, tangent;
//....

  Dual operator*(Dual& d) {
    Dual result;
    result.primal = this->primal * d.primal;
    result.tangent = this->primal * d.tangent + d.primal * this->tangent;

return result;
  }
}

Yu and Blair. 2013. ‘DNAD, a Simple Tool for Automatic Differentiation of Fortran Codes Using Dual Numbers’. Computer Physics
Communications 184 (5): 1446–52.
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A Numerical Example
Compute the primal and tangent of .

Independent variable, . Constant, .

What we’ve achieved here is AUTOMATIC DIFFERENTIATION.
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Multivariate Dual Numbers
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Why Would We Want To Do Any Of This?
• End-to-end differentiability is fundamental to gradient-based optimisation

methods.
• Gradient descent is fundamental to contemporary approaches to machine

learning.
• Automatic Differentiation and Differentiable Programming ensure end-to-end

differentiability.
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What Does This Have To Do With Faust?
• Many of Faust’s primitive operators are trivially differentiable.
• Dual-number automatic differentiation can be implemented in Faust.
• Pattern matching can be used to override Faust’s primitives with differentiable

implementations.
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Gradient-based Parameter Optimisation
Take ground truth circuit producing target output signal , and optimisable circuit

producing estimate output .

Compare  and  via a loss function.

Partial derivatives of the loss function are the gradients in the direction that minimises
its value.

Backpropagating the gradients, we can update the parameters of the optimisable
circuit.
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Examples
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https://faustide.grame.fr/
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Provisos, Caveats
• Automatic Differentiation has a reverse mode too — and it may be more ef�cient.
• Some of Faust’s primitives don’t have well-de�ned derivatives.
• The derivative of a variable delay de�es a closed-form solution.
• Pattern matching has its limitations.
• Loss taken in time-domain; only works for deterministic input, not perceptually-

informed.
• Optimisation ≠ generalisation.
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Thank you
https://github.com/hatchjaw/faust-ddsp
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