Differentiable DSP in Faust Thomas Rushton Inria, Emeraude Team — INSA Lyon

- Differentiation
- Dual Number arithmetic
- Automatic Differentiation
- Differentiable Programming in Faust
- Gradient-based Parameter Optimisation

2

Differentiation

 $f'(x) = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$

Infinitessimal Jest

6

Let
$$h = \varepsilon \dot{x}$$

 \dot{x} is Newton's notation for the derivative.

arepsilon is a nilpotent symbol: arepsilon
eq 0 , $arepsilon^2 = 0$

Baydin, Pearlmutter, Radul, and Siskind. 2018. 'Automatic Differentiation in Machine Learning: A Survey'. Journal of Machine Learning Research 18.

Rall. 1986. 'The Arithmetic of Differentiation'. Mathematics Magazine 59 (5): 275–82.

Let
$$f(x) = x$$

$f(x) + \varepsilon \dot{x} f'(x) = x + \varepsilon \dot{x}$

This is a **DUAL** NUMBER.

The first component is the **PRIMAL** expression; the second is the **TANGENT**.

Possible interpretation – truncated Taylor series expansion at $\varepsilon \dot{x} = 0$:

$$f(x+arepsilon\dot{x})=x+arepsilon\dot{x}f'(x)+\underbrace{(arepsilon\dot{x})^2}_2 f''(x)}_2+\underbrace{(arepsilon\dot{x})^3}_2 f'''(x)}_2$$

Dual Number Arithmetic

9

The basic rules of differentiation arithmetic arise from application of dual numbers.

$$egin{aligned} &(u+arepsilon\dot{u})+(v+arepsilon\dot{v})=u+v+arepsilon(\dot{u}+\dot{v})\ &(u+arepsilon\dot{u})-(v+arepsilon\dot{v})=u-v+arepsilon(\dot{u}-\dot{v})\ &(u+arepsilon\dot{u}) imes(v+arepsilon\dot{v})=uv+arepsilon(u\dot{v}+v\dot{u})\ &(u+arepsilon\dot{u})\dot{v}+arepsilon\dot{v}arepsilon=uv+arepsilon(u+arepsilon\dot{u})rac{1}{(v+arepsilon\dot{v})}\ &=(u+arepsilon\dot{u})\left(rac{1}{v}-arepsilonrac{\dot{v}}{v^2}
ight)\ &=rac{u}{v}+arepsilon\left(rac{v\dot{u}-u\dot{v}}{v^2}
ight) \end{aligned}$$

The truncated Taylor series gives us some other useful results. $\sin(u + \varepsilon \dot{u}) = \sin(u) + \varepsilon \dot{u} \cos(u)$ $\ln(u+\varepsilon\dot{u}) = \ln(u) + \varepsilon\dot{u}rac{1}{u}$ $e^{(u+\varepsilon\dot{u})} = e^u + \varepsilon\dot{u}e^u$

 $(u+arepsilon\dot{u})^{(v+arepsilon\dot{v})}=u^v+arepsilon u^{v-1}(\dot{v}u\ln(u)+\dot{u}v)$

Multiple applications of $f(x+arepsilon\dot{x})$ give us the chain rule.

$$egin{aligned} f(g(x+arepsilon\dot{x}))&=f(g(x)+arepsilon\dot{x}g'(x))\ &=f(w+arepsilon\dot{w})\ ,\quad w=g(x)\ ,\quad \dot{w}=x\ &=f(w)+arepsilon\dot{w}f'(w)\ &=f(g(x))+arepsilon\dot{x}g'(x)f'(g(x)) \end{aligned}$$

E.g. let
$$g(x) = \sin(x)$$
 and $f(v) = v^2$:
 $\sin^2(x + \varepsilon \dot{x}) = \sin^2(x) + \varepsilon \dot{x} \cos(x) 2v$ $= \sin^2(x) + \varepsilon 2 \sin(x) \cos(x)$

$\dot{x}g'(x)$

A Change of Notation

$$({old u}+arepsilon \dot u) o \langle {old u}, u'
angle$$

$$UV=\langle {old u}, u'
angle \langle {old v}, v'
angle = \langle {old u} v, uv'+vu'
angle$$

Possible implementation:

```
class Dual {
 //...
 float primal, tangent;
  //...
  Dual operator*(Dual& d) {
   Dual result;
   result.primal = this->primal * d.primal;
    result.tangent = this->primal * d.tangent + d.primal * this->tangent;
   return result;
  }
}
```

Yu and Blair. 2013. 'DNAD, a Simple Tool for Automatic Differentiation of Fortran Codes Using Dual Numbers'. Computer Physics Communications 184 (5): 1446-52.

A Numerical Example

Compute the primal and tangent of (x + 1)(x - 2). Independent variable, $X = \langle \boldsymbol{x}, \boldsymbol{1} \rangle$. Constant, $C = \langle \boldsymbol{c}, \boldsymbol{0} \rangle$. *x* — $(\langle -1.00, 1.00 \rangle + \langle 1.00, 0.00 \rangle)(\langle -1.00, 1.00 \rangle - \langle 2.00, 0.00 \rangle)$ $=\langle 0.00, 1.00 \rangle \langle -3.00, 1.00 \rangle$ $=\langle 0.00, -3.00 \rangle$

What we've achieved here is **AUTOMATIC DIFFERENTIATION**.

Multivariate Dual Numbers

 $\langle u, u' \rangle \rightarrow \langle u, \nabla u \rangle$

Why Would We Want To Do Any Of This?

- End-to-end differentiability is fundamental to gradient-based optimisation methods.
- Gradient descent is fundamental to contemporary approaches to machine learning.
- Automatic Differentiation and Differentiable Programming ensure end-to-end differentiability.

What Does This Have To Do With Faust?

- Many of Faust's primitive operators are trivially differentiable.
- Dual-number automatic differentiation can be implemented in Faust. \bullet
- Pattern matching can be used to *override* Faust's primitives with differentiable implementations.

Gradient-based Parameter Optimisation

Take ground truth circuit producing target output signal y, and optimisable circuit producing estimate output \hat{y} .

Compare y and \hat{y} via a loss function.

$$\mathcal{L}(y,\hat{y})[n] = ||\hat{y}[n] - y[n]||$$

Partial derivatives of the loss function are the gradients in the direction that minimises its value.

Backpropagating the gradients, we can update the parameters of the optimisable circuit.

Examples

Provisos, Caveats

- Automatic Differentiation has a reverse mode too and it may be more efficient.
- Some of Faust's primitives don't have well-defined derivatives.
- The derivative of a variable delay defies a closed-form solution.
- Pattern matching has its limitations.
- Loss taken in time-domain; only works for deterministic input, not perceptuallyinformed.
- Optimisation \neq generalisation.

Thank you https://github.com/hatchjaw/faust-ddsp