
2024-11-21 International Faust Conference 2024 
MATSUURA Tomoya  / Tokyo University of the Arts, Art Media Center(me@matsuuratomoya.com)

λmmm
-the Intermediate Representation for Synchronous  
Signal Processing Language Based on Lambda Calculus

mailto:me@matsuuratomoya.com


back in 2017. A first (and perhaps the last since today) Faust learning meeting in Japan



Sorry, there were some errors in the typing rules and example codes on the paper!

Corrected version is currently uploaded on Zenodo.

https://doi.org/10.5281/zenodo.13855342 

https://doi.org/10.5281/zenodo.13855342


Agenda

1. Background


2. Syntax of mimium and Lambda-mmm


3. Naive Operational Semantics of Lambda-mmm


4. VM and bytecode format for Lambda-mmm


5. Discussion



1. Background
• Need of formalization for mimium, lambda-calculus based DSP language
• Formalization of synchronous signal processing languages



Background 1: Languages for Signal Processing
Faust

• Block Diagram Algebra: combining block with in/outs by 5 composition 
operators


• parallel(,) sequential(:) split(<:) merge(:>) recursion(~)


• Primitive blocks: constant / arithmetics / delay / conditional*

*Faust's conditional evaluate both branch and take either of the results



Pros and Cons in Faust

• + One algorithm can be translated into multiple platforms: C++/Rust/LLVM IR...


• Lacks theoretical compatibility between other general systems like lambda-calculus 

• - External function call from Faust must be pure


• +- Easy to embed Faust to the host, Uneasy to call host's functions


• Term-Rewriting Macro is an independent system from BDA


• +Can represent complex signal graph with pattern-matching


• - Bad macro may causes an error because of in/out mismatch in BDA, but hard to 
understand the reason for the programmer


• - Implicit distinction between signal(number) and compile-time constant integer



Idea: lambda calculus + 
minimum primitives for the time operation



Idea: lambda calculus + 
minimum primitives for the time operation

Delay and Feedback



minimal musical medium  / mimi(耳👂)+medium

https://github.com/tomoyanonymous/mimium-rs 

Background 2: mimium(2020~)

https://github.com/tomoyanonymous/mimium-rs


mimium's syntax for feedback

fn onepole(x,g){ 
   x*(1.0-g) + self*g 
}

onepole(x,g) =  (1.0 - g) * x + g * _ ~ _; 

onepole(x,g) =   
self ~ _ with { self(y) = (1.0 - g) * x + g * y; };

mimium

Faust

or

(Simplified si.smooth)

can refer to the return value of 1 sample before



Problems in the previous version of mimium

• No formal semantics


• Could not compile codes when the higher-order function is used with the 
stateful function: refers to self or delay somewhere in the call tree


• = the allocation size of internal state for the feedback & delay cannot be 
determined at the compile time


• = Impossible to generate a signal graph parametrically


• →Re-design & implement the compiler from zero again

(Also, I was exhausted to write compiler in C++ and wanted to switch to Rust)



Prior works on lambda-based DSP language

• Kronos[Norilo 2015]


• Based on System-Fω, Type-level computation corresponds to the signal 
graph generation


• No formal semantics(compiler code is the reference)


• W-Calculus[Arias et al. 2021], strongly formalized with Coq


• No higher-order function / only for linear-time invariant systems
W-calculus with loosening these restriction => λmmm



Prior works on lambda-based DSP language

• Kronos[Norilo 2015]


• Based on System-Fω (Type-level lambda abstraction can be used)


• Type-level computation corresponds to the signal graph generation


• Feedback is represented as a type-level recursive function application


• No formal semantics(compiler code is the reference)



Prior works on lambda-based DSP language

• W-Calculus[Arias et al. 2021], strongly formalized with Coq


• Introduces "feed" to the lambda calculus that represents feedback with 1 sample 
delay


• "onepole" example can be expressed like


• No higher-order function 

• Lambda abstraction can map from tuple of number, 
to tuple of number in the type system.


• Only Expr + Expr and Constant * Expr are allowed primitive operations for 
expressing linear time-invariant system (like basic filter and reverb)
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Scope of This Paper & Compiler Pipeline

fn onepole(x,g){ 
   x*(1.0-g) + self*g 
}

Source Code Syntax Tree(≒λmmm)

Type Inference 
& 

MIR Generator
LLVM-like SSA MIR

CONSTANTS:[1.0] 
state_size:1 
fn onepole(x,g)  
MOVECONST 2 0 
MOVE      3 1 
SUBF      2 2 3 
MOVE      3 0 
MULF      2 2 3 
GETSTATE  3 
MOVE      4 1 
MULF      3 3 4 
ADDF      2 2 3 
GETSTATE  3 
SETSTATE  2 
RETURN    3 1

Bytecode 
Generator

Virtual 
Machine

Bytecode

Naive 
Interpreter 
(Inefficient)

2.Syntax 3. Semantics

4. VM 
& Bytecode

Formalization of this part is a future work
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2. Syntax of λmmm



Syntax of λmmm
base on a simply typed, call by value lambda calculus

(Aggregate types like tuple are omitted in this paper.)

e ::= 
          x x ∈ vp
          [value]
| 
          λx.e [lambda]
| 
          let x = e1 in e2 [let]
| 
          fix x.e [ fixpoint]
| 
          e1 e2 [app]
| 
          if (ec) et else ee [if ]
| 
          delay n e1 e2 n ∈ ℕ
          [delay]
| 
          feed x.e [ feed]
| ...

τp ::= R [real]
| N [nat]

τ ::= τp

| τ → τ [ function]

Values Terms

vp ::= r r ∈ ℝ
| n n ∈ ℕ

v ::= vp

| cls(λx.e, E)

Types



Typing Rule(Excerpt)

Γ, x : τa ⊢ e : τb

Γ ⊢ λx.e : τa → τb

          [T-LAM]

Γ ⊢ n : N Γ ⊢ e1 : τ Γ ⊢ e2 : R
Γ ⊢ delay n e1 e2 : τ


          [T-DELAY]

Γ, x : τp ⊢ e : τp

Γ ⊢ feedx.e : τp
[T-FEED]

Γ ⊢ ec : R Γ ⊢ et : τ Γ ⊢ ee : τ
Γ ⊢ if (ec) et ee : τ


          [T-IF]

"Allows maps from any type to any type"

"Time index must be real number"

"Use number instead of boolean for condition"

"Feed must not return functional type"



Typing Rule(Excerpt)

Γ, x : τa ⊢ e : τb

Γ ⊢ λx.e : τa → τb

          [T-LAM]

Γ ⊢ n : N Γ ⊢ e1 : τ Γ ⊢ e2 : R
Γ ⊢ delay n e1 e2 : τ


          [T-DELAY]

Γ, x : τp ⊢ e : τp

Γ ⊢ feedx.e : τp
[T-FEED]

Γ ⊢ ec : R Γ ⊢ et : τ Γ ⊢ ee : τ
Γ ⊢ if (ec) et ee : τ


          [T-IF]

Only primitive types are allowed for feed  
to simplify implementation. 

 
However, returning function  

in feed could be theoretically possible. 
(The function whose behavior changes 

sample-by-sample?)



3. Naive Operational 
Semantics of λmmm



Operational Semantics of λmmm
(Big-step style, Excerpt)

En ⊢ e1 ⇓ v1 n > v1 En−v1 ⊢ e2 ⇓ v2

En ⊢ delay n e1 e2 ⇓ v2
[E-DELAY]

En ⊢ λx.e ⇓ cls(λx.e, En)

          [E-LAM]

En−1 ⊢ e ⇓ v1 En, x ↦ v1 ⊢ e ⇓ v2

En, x ↦ v2 ⊢ feed x e ⇓ v1
[E-FEED]

En ⊢ ec ⇓ n n > 0 En ⊢ et ⇓ v
            
En ⊢ if(ec) et else et ⇓ v

[E-IFTRUE]

En ⊢ ec ⇓ n n ≦ 0 En ⊢ ee ⇓ v
En ⊢ if(ec) et else et ⇓ v

[E-IFFALSE]

En ⊢ e1 ⇓ cls(λxc.ec, En
c )En ⊢ e2 ⇓ v2 En

c , xc ↦ v2 ⊢ ec ⇓ v
En ⊢ e1
            e2 ⇓ v

[E-APP]

This semantics stores 
evaluation context in each 

sample as En. 

If referred to the environment 
of n<0, it returns 0. 

In this semantics, the value 
from 0 to the present is 

recalculated every sample, 
and the variable environments 
are recreated and discarded 

each time.



4. VM to execute λmmm



VM and Bytecodes for λmmm

• Based on Lua VM 5.0 (Register-machine but the register is represented as just 
the relative position on a call stack from a base pointer)


• Resolves captured values of the closure by special instruction `getupvalue`


• Tuned for static typed language


• e.g. Call to the global function and Call to the closure are different operation


• Only closures are heap-allocated (currently managed by reference-counted 
GC)


• Operations for getting/setting internal state variable for self and delay



MOVE A B R(A) := R(B) 
MOVECONST A B R(A) := K(B) 
GETUPVALUE A B R(A) := U(B) 
(SETUPVALUE does not exist) 

GETSTATE* A R(A) := SPtr[SPos] 
SETSTATE* A SPtr[SPos] := R(A) 
SHIFTSTATE* sAx SPos += sAx 
DELAY* A B C R(A) := update_ringbuffer(SPtr[SPos],R(B),R(C)) 
*(SPos,SPtr)= vm.closures[vm.statepos_stack.top()].state 
(if vm.statepos_stack is empty, use global state storage.) 
JMP sAx PC +=sAx 
JMPIFNEG A sBx if (R(A)<0) then PC += sBx 
CALL A B C R(A),...,R(A+C-2) := program.functions[R(A)](R(A+1),...,R(A+B-1)) 
CALLCLS A B C vm.statepos_stack.push(R(A)) 

R(A),...,R(A+C-2) := vm.closures[R(A)].fnproto(R(A+1),...,R(A+B-1)) 
vm.statepos_stack.pop() 

CLOSURE A Bx  vm.closures.push(closure(program.functions[R(Bx)])) 
R(A) := vm.closures.length - 1 

CLOSE A close stack variables up to R(A) 

RETURN A B return R(A), R(A+1)...,R(A+B-2) 
ADDF A B C R(A) := R(B) as float + R(C) as float 
SUBF A B C R(A) := R(B) as float - R(C) as float 
MULF A B C R(A) := R(B) as float * R(C) as float 
DIVF A B C R(A) := R(B) as float / R(C) as float 
ADDI A B C R(A) := R(B) as int + R(C) as int 
...Other basic arithmetic continues for each primitive types...

(In the actual compiler, most of the 
operation have an additional operand 
to indicate word-size of the value to 

handle aggregate-type value)



Overview of the VM and Program
Virtual Machine

Program Counter

State_Ptr Stack

Audio Driver

Call Stack

...

State Storage

Closure Storage

Base Pointer

State Position

State for self
1
Ring Buffer for 

delay 1

State for self
2
Ring Buffer for 

delay 2

...

Program

Function Prototype0

Static Variables

...

...
Function Prototype1

OP A B C
OP A B C
OP A B C
OP A B C
OP A B C

Upvalue List

Program

State Size

 Local(N1)
 Upvalue(N2)

Open Closure

Function Prototype

State Storage

Upvalues
Open(Local(N1))
Open(Upvalue(N2))

State Position

Escaped Closure

Function Prototype

State Storage

Upvalues

State Position

Closed Upvalue 1
Closed Upvalue 2

Somewhere on the Heap Memory 
(Maybe Shared with other closures)




Simplified version when no stateful functions are used
Virtual Machine

Program Counter

Audio Driver

Call Stack

...

Closure Storage

Base Pointer

Program

Function Prototype0

Static Variables

...

...
Function Prototype1

OP A B C
OP A B C
OP A B C
OP A B C
OP A B C

Upvalue List

Program

 Local(N1)
 Upvalue(N2)

Open Closure

Function Prototype

Upvalues
Open(Local(N1))
Open(Upvalue(N2))

Escaped Closure

Function Prototype

Upvalues
Closed Upvalue 1
Closed Upvalue 2

Somewhere on the Heap Memory 
(Maybe Shared with other closures)




Case: combining multiple delay with feedback

fn fbdelay(x,fb,dtime){ 
    x + delay(1000,self,dtime)*fb 
} 
fn twodelay(x,dtime){ 
    fbdelay(x,dtime,0.7) 
      +fbdelay(x,dtime*2,0.8) 
} 
fn dsp(x){ 
    twodelay(x,400)+twodelay(x,800) 
} 

"fbdelay" uses delay with 1000 as a 
maximum samples , and self

"twodelay" uses "fbdelay" twice

"dsp" uses "twodelay" twice



CONSTANTS:[0.7,2,0.8,400,800,0,1] 
fn fbdelay(x,fb,dtime) 
state_size:1004 
    MOVE       3 0 //load x 
    GETSTATE   4      
    SHIFTSTATE 1      
    DELAY      4 4 2  
    MOVE       5 1    
    MULF       4 4 5 
    ADDF       3 3 4 
    SHIFTSTATE -1    
    GETSTATE   4      
    SETSTATE   3      
    RETURN     4 1    

fn twodelay(x,dtime) 
state_size:2008 
    MOVECONST  2 5  
    MOVE       3 0 
    MOVE       4 1 
    MOVECONST  5 0 
    CALL       2 3 1 
    SHIFTSTATE 1004 
    MOVECONST  3 5 
    MOVE       4 0 
    MOVECONST  5 1 //load 2 
    MULF       4 4 5 
    MOVECONST  5 0 //load 0.7 
    CALL       3 3 1 
    ADDF       3 3 4 
    SHIFTSTATE -1004 
    RETURN     3 1 

fn dsp (x) 
state_size:4016 
    MOVECONST  1 6 //load twodelay 
    MOVE       2 0 
    MOVECONST  3 3 //load 400 
    CALL       1 2 1 
    SHIFTSTATE 2008 
    MOVECONST  2 6 //load twodelay 
    MOVE       2 3 
    MOVE       3 0 
    MOVECONST  3 4 //load 400 
    CALL       2 2 1 
    ADD        1 1 2 
    SHIFTSTATE -2008 
    RETURN     1 1 

Bytecode Representation of the "twodelay" Example



fn fbdelay(x,fb,dtime) state_size:1004 
    MOVE       3 0 //load x 
    GETSTATE   4      
    SHIFTSTATE 1      
    DELAY      4 4 2  
    MOVE       5 1    
    MULF       4 4 5 
    ADDF       3 3 4 
    SHIFTSTATE -1    
    GETSTATE   4      
    SETSTATE   3      
    RETURN     4 1   

State for Self

Ring Buffer for 
Delay

SPos

...

...



fn fbdelay(x,fb,dtime) state_size:1004 
    MOVE       3 0 //load x 
    GETSTATE   4      
    SHIFTSTATE 1      
    DELAY      4 4 2  
    MOVE       5 1    
    MULF       4 4 5 
    ADDF       3 3 4 
    SHIFTSTATE -1    
    GETSTATE   4      
    SETSTATE   3      
    RETURN     4 1   

State for Self

Ring Buffer for 
Delay

SPos

Refer to the "self" 
Take one word at SPos, and load to register 4

...

...



fn fbdelay(x,fb,dtime) state_size:1004 
    MOVE       3 0 //load x 
    GETSTATE   4      
    SHIFTSTATE 1      
    DELAY      4 4 2  
    MOVE       5 1    
    MULF       4 4 5 
    ADDF       3 3 4 
    SHIFTSTATE -1    
    GETSTATE   4      
    SETSTATE   3      
    RETURN     4 1   

State for Self

Ring Buffer for 
Delay

SPos

...

...



fn fbdelay(x,fb,dtime) state_size:1004 
    MOVE       3 0 //load x 
    GETSTATE   4      
    SHIFTSTATE 1      
    DELAY      4 4 2  
    MOVE       5 1    
    MULF       4 4 5 
    ADDF       3 3 4 
    SHIFTSTATE -1    
    GETSTATE   4      
    SETSTATE   3      
    RETURN     4 1   

State for Self

Ring Buffer for 
Delay

SPos

...

...

Update a ring buffer at a SPos



fn fbdelay(x,fb,dtime) state_size:1004 
    MOVE       3 0 //load x 
    GETSTATE   4      
    SHIFTSTATE 1      
    DELAY      4 4 2  
    MOVE       5 1    
    MULF       4 4 5 
    ADDF       3 3 4 
    SHIFTSTATE -1    
    GETSTATE   4      
    SETSTATE   3      
    RETURN     4 1   

State for Self

Ring Buffer for 
Delay

SPos

...

...

Move back Spos so that the sum of the Spos 
movement within the function should be 0



fn fbdelay(x,fb,dtime) state_size:1004 
    MOVE       3 0 //load x 
    GETSTATE   4      
    SHIFTSTATE 1      
    DELAY      4 4 2  
    MOVE       5 1    
    MULF       4 4 5 
    ADDF       3 3 4 
    SHIFTSTATE -1    
    GETSTATE   4      
    SETSTATE   3      
    RETURN     4 1   

State for Self

Ring Buffer for 
Delay

SPos

...

...

If "self" is used, take the previous return value from 
Spos, write return value at this time to Spos, and 

return the previous value from function



fn twodelay(x,dtime) state_size:2008 
    MOVECONST  2 5  
    MOVE       3 0 
    MOVE       4 1 
    MOVECONST  5 0 
    CALL       2 3 1 
    SHIFTSTATE 1004 
    MOVECONST  3 5 
    MOVE       4 0 
    MOVECONST  5 1 //load 2 
    MULF       4 4 5 
    MOVECONST  5 0 //load 0.7 
    CALL       3 3 1 
    ADDF       3 3 4 
    SHIFTSTATE -1004 
    RETURN     3 1

State for Self

Ring Buffer for 
Delay

SPos

...

...

State for Self

Ring Buffer for 
Delay

0

1

2 Call to the first "fbdelay"



fn twodelay(x,dtime) state_size:2008 
    MOVECONST  2 5  
    MOVE       3 0 
    MOVE       4 1 
    MOVECONST  5 0 
    CALL       2 3 1 
    SHIFTSTATE 1004 
    MOVECONST  3 5 
    MOVE       4 0 
    MOVECONST  5 1 //load 2 
    MULF       4 4 5 
    MOVECONST  5 0 //load 0.7 
    CALL       3 3 1 
    ADDF       3 3 4 
    SHIFTSTATE -1004 
    RETURN     3 1

State for Self

Ring Buffer for 
Delay

...

...

State for Self

Ring Buffer for 
Delay

0

1

2

SPos 3

1 for self, 1003 for delay(3 for read index, write index, buffer size)  => 1004



fn twodelay(x,dtime) state_size:2008 
    MOVECONST  2 5  
    MOVE       3 0 
    MOVE       4 1 
    MOVECONST  5 0 
    CALL       2 3 1 
    SHIFTSTATE 1004 
    MOVECONST  3 5 
    MOVE       4 0 
    MOVECONST  5 1 //load 2 
    MULF       4 4 5 
    MOVECONST  5 0 //load 0.7 
    CALL       3 3 1 
    ADDF       3 3 4 
    SHIFTSTATE -1004 
    RETURN     3 1

State for Self

Ring Buffer for 
Delay

...

...

State for Self

Ring Buffer for 
Delay

0

1

2

SPos 3

4

5

Call to the second "fbdelay"



fn twodelay(x,dtime) state_size:2008 
    MOVECONST  2 5  
    MOVE       3 0 
    MOVE       4 1 
    MOVECONST  5 0 
    CALL       2 3 1 
    SHIFTSTATE 1004 
    MOVECONST  3 5 
    MOVE       4 0 
    MOVECONST  5 1 //load 2 
    MULF       4 4 5 
    MOVECONST  5 0 //load 0.7 
    CALL       3 3 1 
    ADDF       3 3 4 
    SHIFTSTATE -1004 
    RETURN     3 1

State for Self

Ring Buffer for 
Delay

...

...

State for Self

Ring Buffer for 
Delay

0

1

2
SPos

3

4

5

6



fn dsp (x) 
state_size:4016 
    MOVECONST  1 6 //load twodelay 
    MOVE       2 0 
    MOVECONST  3 3 //load 400 
    CALL       1 2 1 
    SHIFTSTATE 2008 
    MOVECONST  2 6 //load twodelay 
    MOVE       2 3 
    MOVE       3 0 
    MOVECONST  3 4 //load 400 
    CALL       2 2 1 
    ADD        1 1 2 
    SHIFTSTATE -2008 
    RETURN     1 1 

State for Self

Ring Buffer for 
Delay

State for Self

Ring Buffer for 
Delay

0

1

2SPos

3

4

5

6

State for Self

Ring Buffer for 
Delay

State for Self

Call to the first "twodelay"



fn dsp (x) 
state_size:4016 
    MOVECONST  1 6 //load twodelay 
    MOVE       2 0 
    MOVECONST  3 3 //load 400 
    CALL       1 2 1 
    SHIFTSTATE 2008 
    MOVECONST  2 6 //load twodelay 
    MOVE       2 3 
    MOVE       3 0 
    MOVECONST  3 4 //load 400 
    CALL       2 2 1 
    ADD        1 1 2 
    SHIFTSTATE -2008 
    RETURN     1 1 

State for Self

Ring Buffer for 
Delay

State for Self

Ring Buffer for 
Delay

0

1

2

SPos

3

4

5

6

State for Self

Ring Buffer for 
Delay

State for Self

7



fn dsp (x) 
state_size:4016 
    MOVECONST  1 6 //load twodelay 
    MOVE       2 0 
    MOVECONST  3 3 //load 400 
    CALL       1 2 1 
    SHIFTSTATE 2008 
    MOVECONST  2 6 //load twodelay 
    MOVE       2 3 
    MOVE       3 0 
    MOVECONST  3 4 //load 400 
    CALL       2 2 1 
    ADD        1 1 2 
    SHIFTSTATE -2008 
    RETURN     1 1 

State for Self

Ring Buffer for 
Delay

State for Self

Ring Buffer for 
Delay

0

1

2

SPos

3

4

5

6

State for Self

Ring Buffer for 
Delay

State for Self

7

8

9

10

11

12

13

Call to the second "twodelay"



fn dsp (x) 
state_size:4016 
    MOVECONST  1 6 //load twodelay 
    MOVE       2 0 
    MOVECONST  3 3 //load 400 
    CALL       1 2 1 
    SHIFTSTATE 2008 
    MOVECONST  2 6 //load twodelay 
    MOVE       2 3 
    MOVE       3 0 
    MOVECONST  3 4 //load 400 
    CALL       2 2 1 
    ADD        1 1 2 
    SHIFTSTATE -2008 
    RETURN     1 1 

State for Self

Ring Buffer for 
Delay
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1
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5
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fn dsp (x) 
state_size:4016 
    MOVECONST  1 6 //load twodelay 
    MOVE       2 0 
    MOVECONST  3 3 //load 400 
    CALL       1 2 1 
    SHIFTSTATE 2008 
    MOVECONST  2 6 //load twodelay 
    MOVE       2 3 
    MOVE       3 0 
    MOVECONST  3 4 //load 400 
    CALL       2 2 1 
    ADD        1 1 2 
    SHIFTSTATE -2008 
    RETURN     1 1 

State for Self

Ring Buffer for 
Delay

State for Self

Ring Buffer for 
Delay

0

1

2SPos

3

4

5

6

State for Self

Ring Buffer for 
Delay

State for Self

7

8

9

10

11

12

13

14

By having relative offsets, 
each functions do not need to care 

where they are called from



Combination with Higher-Order Function
fn bandpass(x,freq){ 
      //... 
    } 
fn filterbank(n,filter_factory:()->(float,float)->float){ 
  if (n>0){ 
    let filter = filter_factory()  
    let next = filterbank(n-1,filter_factory) 
    |x,freq| filter(x,freq+n*100) 
             + next(x,freq) 
  }else{ 
    |x,freq| 0 
  } 
} 
let myfilter = filterbank(3,| | bandpass) 
fn dsp(){ 
      myfilter(x,1000) 
}



Combination with Higher-Order Function
fn bandpass(x,freq){ 
      //... 
    } 
fn filterbank(n,filter_factory:()->(float,float)->float){ 
  if (n>0){ 
    let filter = filter_factory()  
    let next = filterbank(n-1,filter_factory) 
    |x,freq| filter(x,freq+n*100) 
             + next(x,freq) 
  }else{ 
    |x,freq| 0 
  } 
} 
let myfilter = filterbank(3,| | bandpass) 
fn dsp(){ 
      myfilter(x,1000) 
}

The size of the internal state variable for "filter_factory" is 
not determined at a compile time.



Virtual Machine

Program Counter

State_Ptr Stack

Audio Driver

Call Stack

...

State Storage

Closure Storage

Base Pointer

State Position

State for self
1
Ring Buffer for 

delay 1

State for self
2
Ring Buffer for 

delay 2

...

Program

Function Prototype0

Static Variables

...

...
Function Prototype1

OP A B C
OP A B C
OP A B C
OP A B C
OP A B C

Upvalue List

Program

State Size

 Local(N1)
 Upvalue(N2)

Open Closure

Function Prototype

State Storage

Upvalues
Open(Local(N1))
Open(Upvalue(N2))

State Position

Escaped Closure

Function Prototype

State Storage

Upvalues

State Position

Closed Upvalue 1
Closed Upvalue 2

Somewhere on the Heap Memory 
(Maybe Shared with other closures)


When the closure is made with CLOSURE instruction,  
it allocates storage for internal state variables individually



Virtual Machine

Program Counter

State_Ptr Stack

Audio Driver

Call Stack

...

State Storage

Closure Storage

Base Pointer

State Position

State for self
1
Ring Buffer for 

delay 1

State for self
2
Ring Buffer for 

delay 2

...

Program

Function Prototype0

Static Variables

...

...
Function Prototype1

OP A B C
OP A B C
OP A B C
OP A B C
OP A B C

Upvalue List

Program

State Size

 Local(N1)
 Upvalue(N2)

Open Closure

Function Prototype

State Storage

Upvalues
Open(Local(N1))
Open(Upvalue(N2))

State Position

Escaped Closure

Function Prototype

State Storage

Upvalues

State Position

Closed Upvalue 1
Closed Upvalue 2

Somewhere on the Heap Memory 
(Maybe Shared with other closures)


When CALLCLS is used, VM pushes the pointer to closure's state storage to the stack, 
to switch which storage are used in GET/SET/SHIFTSTATE operations 



CONSTANTS[100,1,0,2] 
fn inner_then(x,freq) 
    //upvalue:
[local(4),local(3),local(2),local(1)] 
    GETUPVALUE 3 2 //load filter 
    MOVE       4 0 
    MOVE       5 1 
    GETUPVALUE 6 1 //load n 
    ADDD       5 5 6 
    MOVECONST  6 0 
    MULF       5 5 6 
    CALLCLS    3 2 1  //call filter 
    GETUPVALUE 4 4 //load next 
    MOVE       5 0 
    MOVE       6 1 
    CALLCLS    4 2 1 //call next 
    ADDF       3 3 4 
    RETURN     3 1 

fn inner_else(x,freq) 
    MOVECONST  2 2 
    RETURN     2 1 

fn filterbank(n,filter_factory) 
    MOVE      2 0 //load n 
    MOVECONST 3 2 //load 0 
    SUBF      2 2 3 
    JMPIFNEG  2 12 
    MOVE      2 1 //load filter_factory 
    CALL      2 2 0 //get filter 
    MOVECONST 3 1 //load itself 
    MOVE      4 0 //load n 
    MOVECONST 5 1 //load 1 
    SUBF      4 4 5 
    MOVECONST 5 2 //load inner_then 
    CALLCLS   3 2 1 //recursive call 
    MOVECONST 4 2 //load inner_then 
    CLOSURE   4 4 //load inner_lambda 
    JMP       2 
    MOVECONST 4 3 //load inner_else 
    CLOSURE   4 4 
    CLOSE     4 
    RETURN    4 1 

There are no "GET/SET/SHIFTSTATE" operation here!



Combination with Higher-Order Function
fn bandpass(x,freq){ 
      //... 
    } 
fn filterbank(n,filter_factory:()->(float,float)->float){ 
  if (n>0){ 
    let filter = filter_factory()  
    let next = filterbank(n-1,filter_factory) 
    |x,freq| filter(x,freq+n*100) 
             + next(x,freq) 
  }else{ 
    |x,freq| 0 
  } 
} 
let myfilter = filterbank(3,| | bandpass) 
fn dsp(){ 
      myfilter(x,1000) 
}

This works like a constructor of Unit Generator, 
in the object-oriented programming world



5. Discussion
• Counterintuitive behavior of higher order functions
• Foreign stateful function call

• Comparison to the other languages



Comparison to the other languages

Parametric Signal Graph Actual DSP

Faust Term Rewriting Macro BDA

Kronos Type-level Computation Value Evaluation

mimium Global Context Execution dsp Function Execution

Both are same semantics in the value level.  
This will make it easier to understand for novice users but...



This code does not work:

fn filterbank(n,filter){ 
  if (n>0){ 
    |x,freq| filter(x,freq+n*100) 
    + filterbank(n-1,filter)(x,freq) 
  }else{ 
    |x,freq| 0 
  } 
} 
fn dsp(){ 
  filterbank(3,bandpass)(x,1000) 
}



This code does not work:

fn filterbank(n,filter){ 
  if (n>0){ 
    |x,freq| filter(x,freq+n*100) 
    + filterbank(n-1,filter)(x,freq) 
  }else{ 
    |x,freq| 0 
  } 
} 
fn dsp(){ 
  filterbank(3,bandpass)(x,1000) 
}

These part re-instantiates the closure with zero-
initiallized state variables every samples



This code still does not work:
fn filterbank(n,filter){ 
  let next = filterbank(n-1,filter) 
  if (n>0){ 
    |x,freq| filter(x,freq+n*100) 
      + next(x,freq) 
  }else{ 
    |x,freq| 0 
  } 
} 
let myfilter = filterbank(3,bandpass) 
fn dsp(){ 
      myfilter(x,1000) 
 }



This code still does not work:
fn filterbank(n,filter){ 
  let next = filterbank(n-1,filter) 
  if (n>0){ 
    |x,freq| filter(x,freq+n*100) 
      + next(x,freq) 
  }else{ 
    |x,freq| 0 
  } 
} 
let myfilter = filterbank(3,bandpass) 
fn dsp(){ 
      myfilter(x,1000) 
 }

This code shares the same instance of the 
closure and updated multiple times at a sample

*This behavior could be fixed by changing the closure to be “deep-copied” when passed as an argument to HOF.



If the Multi-Stage Programming can be used:

fn filterbank(n,filter:&(float,float)->float)->&(float,float)->float{ 
  .< if (n>0){ 
    |x,freq| ~filter(x,freq+n*100)  
      + ~filterbank(n-1,filter)(x,freq) 
  }else{ 
    |x,freq| 0 
  } >. 
} 
fn dsp(){ 
  ~filterbank(3,.<bandpass>.)(x,1000) 
}

*This is a pseudo-code, based on the syntax of BER MetaOCaml



Considering on a multi-stage computation

• Question: When should we evaluate stage-0. At AST or Bytecode?


• If the former, we have to implement two different evaluators.


• If the latter, we have to translate multi-stage computation semantics into 
imperative world somehow.


• Is the syntax of multi-stage computation really easy to understand for 
novices, than the type-level computation in Kronos or the term rewriting 
macro in Faust?

*I'm going to this choice currently



Foreign stateful function calls

• Because the closure works like Unit Generator in the OOP world, mimium can  
call UGen defined in the native code with small wrapper naturally.


• though it will not work for vector-by-vector processing correctly.



In fact, some external modules like MIDI and Instant oscilloscope 
 (written in Rust) are used with higher-order function pattern



Wrap-up

• λmmm: an extended call-by value lambda calculus, that adds "delay" and "feed"


• Proposed VM and Instruction set for it


• GET/SET/SHIFTSTATE to handle "delay" and "feed"


• A closure instance holds a memory for state variables for "delay" and "feed" to handle a 
higher-order function with stateful functions.


• Resulted in unified semantics for both parametric signal graph generation and actual execution 
of the graph


• This makes it easier to understand semantics but the users have to be responsible to distinct 
whether the function is evaluated in global context once or in "dsp" function iteratively


• Domain-Specific, but not loosing generality, self-extensibility and interoperability



Thank you for listening.

email: me@matsuuratomoya.com 

mastodon: social.matsuuratomoya.com/@tomoya 

https://github.com/tomoyanonymous/mimium-rs 
Development repository of  mimium v2 (written in Rust)

mailto:me@matsuuratomoya.com
http://social.matsuuratomoya.com/@tomoya
https://github.com/tomoyanonymous/mimium-rs

