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Part 1 : A brief History of
Multirate in Faust



2009: Semantics of multirate Faust

The always-active monorate model is simple, but not always sufficient.
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2015: Mute, Enable and Control

• 2015: mute(x,y) like x*y but the computation of x can be suspend
when y is 0.

• Later, mute was renamed to enable, and a control variant was
added.

• 2021: extended to -vec mode.
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2020: Ondemand

• 2020: Till Bovermann asks for demand-rate computations
• 2020: Specification of ondemand
• 2022: Proof of concept presented at IFC-22
• 2024: Ondemand officially introduced at IFC-24
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Part 2 : Ondemand



Introduction

Objective
Provide multirate and call-by-need computation while preserving
efficiency and simple semantics

Multirate Computation
• Frequency domain
• Upsampling
• Downsampling

call-by-need
• Pay for what you use
• Controlling when computations occur
• Music composition-style computation
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call-by-need strategy

Computations are only performed when explicitly required
• The demand (red arrow) is propagated backwards, starting from the

outputs and moving towards the inputs.
• In response, the computed values (green arrows) are propagated

forwards, moving from the inputs to the outputs.
• The output values remain constant until the next demand.
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Ondemand Semantics

ondemand(C) applies C to downsampled input signals (Si ↓H), producing
upsampled results (Yj ↑H). Here, H is the clock signal.

Semantic rule

(od)
[[C ]](S1 ↓H, ..., Sn ↓H) = (Y1, ..., Ym)

[[ondemand(C)]](H, S1, ..., Sn) = (Y1 ↑H, ..., Ym ↑H)
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Downsampling

The downsampled Si ↓H is computed from Si , based on the clock signal H.
t is the time observed outside C, and t ′ inside.

t Si H Si ↓H down[[H]] t ′

0 a 1 a 0 0
1 b 0 . . .
2 c 0 . . .
3 d 1 d 3 1
4 f 1 f 4 2
5 g 0 . . .

Table 1: Example of downsampling

Semantic rule

(down)
down[[H]] = {n ∈ N | [[H]](n) = 1}
[[Si ↓H]](t) = [[Si ]](down[[H]](t))
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Upsampling

Si ↑H is the upsampling of Si according to clock signal H. t is the time
observed outside C, and t ′ inside.

t ′ Si H Si ↑H up[[H]] t
0 a 1 a 0 0
1 d 0 a 0 1
2 f 0 a 0 2
. . 1 d 1 3
. . 1 f 2 4
. . 0 f 2 5

Table 2: Example of upsampling

Semantic rule

(up)
up[[H]](t) =

∑t
i=0[[H]](i) − 1

[[Si ↑H]](t) = [[Si ]](up[[H]](t))
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Example 1: Sample and Hold

ondemand simplifies the implementation of a Sample and Hold (SH)circuit.
It is directly expressed as the ondemand version of the identity function _.

1: without ondemand
SH = (X,_:select2) ~ _ with { X = _,_ <: !,_,_,!; };

2: with ondemand
SH = ondemand(_);
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Example 1: Generated code

1: without ondemand
for (int i=0; i<count; i++) {

fVec0SE[0] = ((int((float)input0[i])) ?
(float)input1[i] : fVec0SE[1]);

output0[i] = (FAUSTFLOAT)(fVec0SE[0]);
fVec0SE[1] = fVec0SE[0];

}

2: with ondemand
for (int i=0; i<count; i++) {

fTemp0SE = (float)input1[i];
if ((float)input0[i]) {

fPermVar0SE = fTemp0SE;
}
output0[i] = (FAUSTFLOAT)(fPermVar0SE);

}
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Example 2: downsampled noise, without ondemand

Faust code
process = ba.beat(100), no.noise : SH;
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Example 2: downsampled noise, with ondemand

Faust code
process = ba.beat(100) : ondemand(no.noise);
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Example 2: Generated code, without ondemand

Code generated for ba.beat(100), no.noise : SH
for (int i=0; i<count; i++) {

iVec0SI[0] = ((iVec0SI[1] + 1) % 100);
iVec3SI[0] = ((1103515245 * iVec3SI[1]) + 12345);
fVec2SI[0] = (((iVec0SI[0] == 0)) ?

(4.656613e-10f * float(iVec3SI[0]))
: fVec2SI[1]);

output0[i] = (FAUSTFLOAT)(fVec2SI[0]);
fVec2SI[1] = fVec2SI[0];
iVec3SI[1] = iVec3SI[0];
iVec0SI[1] = iVec0SI[0];

}
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Example 2: Generated code, with ondemand

Code generated for ba.beat(100) : ondemand(no.noise)
for (int i=0; i<count; i++) {

iVec0SI[0] = ((iVec0SI[1] + 1) % 100);
if ((iVec0SI[0] == 0)) {

iVec2SI[0] = ((1103515245 * iVec2SI[1]) + 12345);
fPermVar0SI = (4.656613e-10f * float(iVec2SI[0]));
iVec2SI[1] = iVec2SI[0];

}
output0[i] = (FAUSTFLOAT)(fPermVar0SI);
iVec0SI[1] = iVec0SI[0];

}
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Part 3 : ondemand variants



Oversampling

oversampling(C)
Circuit C is run N times faster than the surrounding circuit. The
sampling frequency observed by C, is adjusted proportionally to the
oversampling factor.
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Undersampling

undersampling(C)
Circuit C is run N times slower than the surrounding circuit. The
sampling frequency observed by C, is adjusted proportionally to the
undersampling factor.
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Switch

switch(C0,C1,...,Ck)
Activate one of the Ci circuits according to the control input c. All the
circuits must have the same type n → m.
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Interleave

interleave(C)
Assuming C is of type n → n, interleave(C) is of type 1 → 1 and
operates as follows:

• The incoming samples are distributed sequentially to each of the n
inputs of C,

• C is then executed once, producing n output values.
• These n output values are interleaved back into a single output signal.
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Conclusion

Ondemand and its variants introduce new perspectives
• Frequency domain computation
• Oversampling and undersampling
• Composition-style, call-by-need computation

While maintaining
• Code efficiency
• Simple semantics
• Native integration as circuit primitives.
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Additional Examples



Euclidian Rythms

euclidian(n) = vgroup("%n.EUCLID", er(pulses,steps)
with {

// UI: pulses < steps
steps = vslider("steps[style:knob]", 16, 2, 16, 1)+0.5:int;
pulses = vslider("pulses[style:knob]", 1, 1, 16, 1)+0.5:int : min(steps-1);

// Implementation
er(B,P,C) =

C * ondemand (
(+(1) : %(P)) ~ _
: *(B)
: %(P)
: decr

)(upfront(C));
decr(x) = x < x';
upfront(x) = x > x';

}
);
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Loop

key(n) = vgroup("%n.KEY",
trig : ondemand(irnd(k1,k2):loop(rn,ln):ba.midikey2hz) )

with { random = +(12345) ~ *(1103515245);
noise = random / 2147483647;
irnd(x,y) = x+(noise+1)/2*(y-x);
upfront(x) = x>x';
loop(n,m) = select2(every(n)|for(m)) ~ @(m-1)
with { every(n) = ((+(1):%(n))~_)' == 0;

for(n) = 1-1@n; };
k1 = vslider("[1]key[style:knob]", 60, 0, 127, 1);
k2 = k1+vslider("[2]delta[style:knob]", 0, 0, 24, 1);
ln = vslider("[3]len[style:knob]", 3, 2, 64, 1);
rn = vslider("[4]renew[style:knob]", 11, 2, 127, 1);
trig = button("[5]trig") : upfront;

};
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