
The Future of Faust
Ondemand and Co.

Yann Orlarey, Stéphane Letz
IFC 2024

EMERAUDE (INRIA/INSA/GRAME)

1



Part 1 : A brief History of
Multirate in Faust



2009: Semantics of multirate Faust

The always-active monorate model is simple, but not always sufficient.

2



2015: Mute, Enable and Control

• 2015: mute(x,y) like x*y but the computation of x can be suspend
when y is 0.

• Later, mute was renamed to enable, and a control variant was
added.

• 2021: extended to -vec mode.

3



2020: Ondemand

• 2020: Till Bovermann asks for demand-rate computations
• 2020: Specification of ondemand
• 2022: Proof of concept presented at IFC-22
• 2024: Ondemand officially introduced at IFC-24

4



Part 2 : Ondemand



Introduction

Objective
Provide multirate and call-by-need computation while preserving
efficiency and simple semantics

Multirate Computation
• Frequency domain
• Upsampling
• Downsampling

call-by-need
• Pay for what you use
• Controlling when computations occur
• Music composition-style computation

5



call-by-need strategy

Computations are only performed when explicitly required
• The demand (red arrow) is propagated backwards, starting from the

outputs and moving towards the inputs.
• In response, the computed values (green arrows) are propagated

forwards, moving from the inputs to the outputs.
• The output values remain constant until the next demand.

6



Ondemand Semantics

ondemand(C) applies C to downsampled input signals (Si ↓H), producing
upsampled results (Yj ↑H). Here, H is the clock signal.

Semantic rule

(od)
[[C ]](S1 ↓H, ..., Sn ↓H) = (Y1, ..., Ym)

[[ondemand(C)]](H, S1, ..., Sn) = (Y1 ↑H, ..., Ym ↑H)
7



Downsampling

The downsampled Si ↓H is computed from Si , based on the clock signal H.
t is the time observed outside C, and t ′ inside.

t Si H Si ↓H down[[H]] t ′

0 a 1 a 0 0
1 b 0 . . .
2 c 0 . . .
3 d 1 d 3 1
4 f 1 f 4 2
5 g 0 . . .

Table 1: Example of downsampling

Semantic rule

(down)
down[[H]] = {n ∈ N | [[H]](n) = 1}
[[Si ↓H]](t) = [[Si ]](down[[H]](t))

8



Upsampling

Si ↑H is the upsampling of Si according to clock signal H. t is the time
observed outside C, and t ′ inside.

t ′ Si H Si ↑H up[[H]] t
0 a 1 a 0 0
1 d 0 a 0 1
2 f 0 a 0 2
. . 1 d 1 3
. . 1 f 2 4
. . 0 f 2 5

Table 2: Example of upsampling

Semantic rule

(up)
up[[H]](t) =

∑t
i=0[[H]](i) − 1

[[Si ↑H]](t) = [[Si ]](up[[H]](t))

9



Example 1: Sample and Hold

ondemand simplifies the implementation of a Sample and Hold (SH)circuit.
It is directly expressed as the ondemand version of the identity function _.

1: without ondemand
SH = (X,_:select2) ~ _ with { X = _,_ <: !,_,_,!; };

2: with ondemand
SH = ondemand(_);

10



Example 1: Generated code

1: without ondemand
for (int i=0; i<count; i++) {

fVec0SE[0] = ((int((float)input0[i])) ?
(float)input1[i] : fVec0SE[1]);

output0[i] = (FAUSTFLOAT)(fVec0SE[0]);
fVec0SE[1] = fVec0SE[0];

}

2: with ondemand
for (int i=0; i<count; i++) {

fTemp0SE = (float)input1[i];
if ((float)input0[i]) {

fPermVar0SE = fTemp0SE;
}
output0[i] = (FAUSTFLOAT)(fPermVar0SE);

}

11



Example 2: downsampled noise, without ondemand

Faust code
process = ba.beat(100), no.noise : SH;

12



Example 2: downsampled noise, with ondemand

Faust code
process = ba.beat(100) : ondemand(no.noise);

13



Example 2: Generated code, without ondemand

Code generated for ba.beat(100), no.noise : SH
for (int i=0; i<count; i++) {

iVec0SI[0] = ((iVec0SI[1] + 1) % 100);
iVec3SI[0] = ((1103515245 * iVec3SI[1]) + 12345);
fVec2SI[0] = (((iVec0SI[0] == 0)) ?

(4.656613e-10f * float(iVec3SI[0]))
: fVec2SI[1]);

output0[i] = (FAUSTFLOAT)(fVec2SI[0]);
fVec2SI[1] = fVec2SI[0];
iVec3SI[1] = iVec3SI[0];
iVec0SI[1] = iVec0SI[0];

}

14



Example 2: Generated code, with ondemand

Code generated for ba.beat(100) : ondemand(no.noise)
for (int i=0; i<count; i++) {

iVec0SI[0] = ((iVec0SI[1] + 1) % 100);
if ((iVec0SI[0] == 0)) {

iVec2SI[0] = ((1103515245 * iVec2SI[1]) + 12345);
fPermVar0SI = (4.656613e-10f * float(iVec2SI[0]));
iVec2SI[1] = iVec2SI[0];

}
output0[i] = (FAUSTFLOAT)(fPermVar0SI);
iVec0SI[1] = iVec0SI[0];

}

15



Part 3 : ondemand variants



Oversampling

oversampling(C)
Circuit C is run N times faster than the surrounding circuit. The
sampling frequency observed by C, is adjusted proportionally to the
oversampling factor.

16



Undersampling

undersampling(C)
Circuit C is run N times slower than the surrounding circuit. The
sampling frequency observed by C, is adjusted proportionally to the
undersampling factor.

17



Switch

switch(C0,C1,...,Ck)
Activate one of the Ci circuits according to the control input c. All the
circuits must have the same type n → m.

18



Interleave

interleave(C)
Assuming C is of type n → n, interleave(C) is of type 1 → 1 and
operates as follows:

• The incoming samples are distributed sequentially to each of the n
inputs of C,

• C is then executed once, producing n output values.
• These n output values are interleaved back into a single output signal.

19



Conclusion

Ondemand and its variants introduce new perspectives
• Frequency domain computation
• Oversampling and undersampling
• Composition-style, call-by-need computation

While maintaining
• Code efficiency
• Simple semantics
• Native integration as circuit primitives.

20



Additional Examples



Euclidian Rythms

euclidian(n) = vgroup("%n.EUCLID", er(pulses,steps)
with {

// UI: pulses < steps
steps = vslider("steps[style:knob]", 16, 2, 16, 1)+0.5:int;
pulses = vslider("pulses[style:knob]", 1, 1, 16, 1)+0.5:int : min(steps-1);

// Implementation
er(B,P,C) =

C * ondemand (
(+(1) : %(P)) ~ _
: *(B)
: %(P)
: decr

)(upfront(C));
decr(x) = x < x';
upfront(x) = x > x';

}
);

21



Loop

key(n) = vgroup("%n.KEY",
trig : ondemand(irnd(k1,k2):loop(rn,ln):ba.midikey2hz) )

with { random = +(12345) ~ *(1103515245);
noise = random / 2147483647;
irnd(x,y) = x+(noise+1)/2*(y-x);
upfront(x) = x>x';
loop(n,m) = select2(every(n)|for(m)) ~ @(m-1)
with { every(n) = ((+(1):%(n))~_)' == 0;

for(n) = 1-1@n; };
k1 = vslider("[1]key[style:knob]", 60, 0, 127, 1);
k2 = k1+vslider("[2]delta[style:knob]", 0, 0, 24, 1);
ln = vslider("[3]len[style:knob]", 3, 2, 64, 1);
rn = vslider("[4]renew[style:knob]", 11, 2, 127, 1);
trig = button("[5]trig") : upfront;

};

22


	Part 1 : A brief History of Multirate in Faust
	Part 2 : Ondemand
	Part 3 : ondemand variants
	Additional Examples

