
Phausto:

FAST AND ACCESIBLE DSP
PROGRAMMING WITH PHARO

Domenico Cipriani - 2024

What is Phausto?
• Phausto is a multi-platform library and API that enables the programming

Digital Signal Processors (DSPs) and sound generation in Pharo

• The audio is generated through FFI calls to a dynamic engine that computes
audio signal by leveraging the power on an embedded FAUST compiler.

• Phausto has been developed with three main goals:

1. To allow sound artists and musician to program synthesisers and effects and compose

music with Pharo;

2. To teach DSP programming to beginners and offer a fast prototyping platform for

musician and audio developers, thanks to its Cmajor and C++ exporters

3. To enrich Pharo applications with sound;

Domenico Cipriani - 2024

What is PHARO?
• Pharo is a pure object-oriented, dynamically typed, and reflective language;

its syntax fits in a postcard and it comes with a platform-independent IDE.

• Like the original Smalltalk-80, Pharo provides many live programming features
such as immediate object manipulation, live updates, and just-in-time
compilation (JIT).

• Pharo is a cross-platform implementation of the classic Smalltalk-80
programming language and runtime system. But it comes with a non-viral MIT
license!

• Pharo comes with Integrated Git support and with with an integrated framework
for SUnit Tests

https://en.wikipedia.org/wiki/Live_programming
https://en.wikipedia.org/wiki/Reflective_programming
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Cross-platform_software
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Runtime_system

Domenico Cipriani - 2024

Syntax Fit a postcard
• All Pharo syntax fit

on a Postcard!

Postcard by Pavel Krivanek, 2018

Rule 1: Everything is an Object

Rule 2: Every Class has a superclass

Rule 4: Everything happens by sending messages

Rule 5: Method lookup follows inheritance chain

Rule 6 : Classe are Objects too and they follow the same rules

Domenico Cipriani - 2024

What is smalltalk?
• Alan Kay, Adele Goldberg and Dan Ingalls created Smalltalk at Xerox Parc in 1972.

• It was designed as purely Object-Oriented language designed for teaching programming to young

people

Domenico Cipriani - 2024

Symbolic sound Kyma
•Music programming language

and IDE written in Smalltalk
created by Carla Scaletti and
K u r t J . H e b e l a t U r b a n a
Champaign, Illinois.

• The Smalltalk code is compiled on an external DSPs
called Capybara, Paca(rana), Pacamara (Ristretto)

• “The Holy Grail of sound design”

Domenico Cipriani - 2024

Learn PHARO

• The Pharo MOOC: https://mooc.pharo.org/

• Advanced OOP Design and Development with Pharo:

https://advanced-design-mooc.pharo.org/

https://mooc.pharo.org/

Domenico Cipriani - 2024

INSTALL PHAUSTO

Metacello new

 baseline: 'Phausto';

 repository: 'github://lucretiomsp/phausto:main';

 load

• First, download the Pharo launcher: https://pharo.org/download

• The Pharo Launcher is a tool allowing you to easily download

Pharo core images.
• Download the packed librariesBundle for your platform from the

Phausto repo, https://github.com/lucretiomsp/phausto
• Open a Playground (CMD +OW), then copy and evaluate (CMD+D) this script.

https://pharo.org/download
https://github.com/lucretiomsp/phausto

Domenico Cipriani - 2024

MODULAR Dsp programming
• Phausto offers an approach to develop and design synthesisers and effect that is inspired by

modular synthesiser patching.

Oscillator Envelope Filter Reverb

Output

• Synth := SineOsc new => ADSREnv new => ResonLp new => SatRev new.

• In Phausto, we connect Unit Generator setting their
members value or using the ChucK operator => .

Domenico Cipriani - 2024

EXPORT TO

• We can export our DSP to a Cmajor plug-in.

• We can use the plug-in we created we the Cmajor wrapper plug-in:

 https://github.com/cmajor-lang/cmajor/releases

• Cmajor allows simple procedural DSP code to be easily composed into graph
structures.

• It makes impossible to write code that can crash or break real-time safety
rules.

• It can be very easily learned by anyone who’s dabbled with C/C++, javascript
or other C-style languages.

https://github.com/cmajor-lang/cmajor/releases

